Second-Order Circuits

By Eng. Emad Mahdy

WhatsApp: +201100184676

https://www.youtube.com/channel/UC2VtseEd46wuDfmDXhfB9Ag

https://si-manual.com

Content

- 8.1 Introduction
- 8.2 Finding Initial and Final Values
- 8.3 The Source-Free Series RLC Circuit
- 8.4 The Source-Free Parallel RLC Circuit
- 8.5 Step Response of a Series RLC Circuit
- 8.6 Step Response of a Parallel RLC Circuit

8.1 Introduction

A second-order circuit is characterized by a second-order differential equation. It consists of resistors and the equivalent of two energy storage elements.

Examples of RLC circuits

8.2 Finding Initial and Final Values

Capacitor	Inductor
The capacitor voltage is always continuous so that:	The inductor current is always continuous so that:
$v_C(0^+) = v_C(0^-)$	$i_L(0^+) = i_L(0^-)$
$\frac{dv_c(0^+)}{dt} = \frac{i_C(0^+)}{C}$	$\frac{di_L(0^+)}{dt} = \frac{v_L(0^+)}{L}$

$$\begin{array}{c|c}
R & L \\
\hline
V_0 & + \\
\hline
V_0 & C
\end{array}$$

Figure 8.8 A source-free series *RLC* circuit.

$$s_1 = -\alpha + \sqrt{\alpha^2 - \omega_o^2},$$
 $s_2 = -\alpha - \sqrt{\alpha^2 - \omega_o^2}$ $\alpha = \frac{R}{2L},$ $\omega_o = \frac{1}{\sqrt{LC}}$

- s_1 and $s_2 \rightarrow natural frequencies$
- $\omega_o \rightarrow resonant frequency (or undamped natural frequency)$
- $\alpha \rightarrow damping factor$

Overdamped Case $(\alpha > \omega_o)$	Critically Damped Case $(\alpha > \omega_o)$	Underdamped Case $(\alpha < \omega_o)$		
$i(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$	$i(t) = (A_2 + A_1 t)e^{-\alpha t}$	$i(t) = e^{-\alpha t} (B_1 \cos \omega_d t + B_2 \sin \omega_d t)$		
	$i(t)$ 0 $\frac{1}{\alpha}$ t	e^{-t} $\frac{2\pi}{\omega_d}$		

$$\begin{split} s_1 &= -\alpha + \sqrt{\alpha^2 - \omega_o^2}, \qquad s_2 &= -\alpha - \sqrt{\alpha^2 - \omega_o^2} \\ \alpha &= \frac{1}{2RC}, \qquad \omega_o &= \frac{1}{\sqrt{LC}} \end{split}$$

- s_1 and $s_2 \rightarrow natural frequencies$
- $\omega_o \rightarrow resonant frequency (or undamped natural frequency)$
- $\alpha \rightarrow damping factor$

Overdamped Case $(\alpha > \omega_o)$		Critically Damped Case $(\alpha > \omega_0)$	Underdamped Case $(\alpha < \omega_o)$	
	$v(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$	$v(t) = (A_2 + A_1 t)e^{-\alpha t}$	$v(t) = e^{-\alpha t} (B_1 \cos \omega_d t + B_2 \sin \omega_d t)$	

Figure 8.14 For Example 8.5: responses for three degrees of damping.

8.5 Step Response of a Series RLC Circuit

- s_1 and $s_2 \rightarrow natural frequencies$
- $\omega_o \rightarrow resonant \ frequency \ (or \ undamped \ natural \ frequency)$
- $\alpha \rightarrow damping factor$

Overdamped	Critically Damped	Underdamped
$v(t) = V_s + A_1 e^{s_1 t} + A_2 e^{s_2 t}$	$v(t) = V_s + (A_2 + A_1 t)e^{-\alpha t}$	$v(t) = V_s + e^{-\alpha t} (A_1 \cos \omega_d t + A_2 \sin \omega_d t)$

8.6 Step Response of a Parallel RLC Circuit

- s_1 and $s_2 \rightarrow natural frequencies$
- $\omega_o \rightarrow resonant \ frequency \ (or \ undamped \ natural \ frequency)$
- $\alpha \rightarrow damping factor$

Overdamped	Critically Damped	Underdamped
$i(t) = I_S + A_1 e^{s_1 t} + A_2 e^{s_2 t}$	$i(t) = I_s + (A_1 + A_2 t)e^{-\alpha t}$	$i(t) = I_S + e^{-\alpha t} (A_1 \cos \omega_d t + A_2 \sin \omega_d t)$

Laws Summery

Second-Order Circuits					
ource-Free	Step Response				
Parallel RLC Circuit	Series RLC Circuit	Parallel RLC Circuit			
$R \geqslant \begin{array}{c cccc} & & & & & & \\ & & & & & \\ & v & & & \\ & & & &$	$V_{s} \stackrel{t}{\stackrel{t}{=}} V_{s} \stackrel{t}{\stackrel{t}{=}} V_{s$	I_s $t = 0$ $R \geqslant L \geqslant C \qquad \frac{+}{v}$			
$\alpha = \frac{1}{2RC}$	$\alpha = \frac{R}{2L}$	$\alpha = \frac{1}{2RC}$			
	Parallel RLC Circuit	urce-Free Step F Parallel RLC Circuit Series RLC Circuit $t = 0$ R V_s			

$$s_1 = -\alpha + \sqrt{\alpha^2 - \omega_o^2}, \qquad s_2 = -\alpha - \sqrt{\alpha^2 - \omega_o^2}$$

$$\omega_o = \frac{1}{\sqrt{LC}}$$

- s_1 and $s_2 \rightarrow natural frequencies$
- $\omega_o \rightarrow resonant \ frequency \ (or \ undamped \ natural \ frequency)$
- $\alpha \rightarrow damping factor$

Overdamped Case $(\alpha > \omega_o)$	$i(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$	Overdamped Case $(\alpha > \omega_0)$	$v(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$	Overdamped Case $(\alpha > \omega_o)$	$v(t) = V_s + A_1 e^{s_1 t} + A_2 e^{s_2 t}$	Overdamped Case $(\alpha > \omega_o)$	$i(t) = I_s + A_1 e^{s_1 t} + A_2 e^{s_2 t}$
Critically Damped Case $(\alpha = \omega_o)$	$i(t) = (A_2 + A_1 t)e^{-\alpha t}$	Critically Damped Case $(\alpha = \omega_o)$	$v(t) = (A_2 + A_1 t)e^{-\alpha t}$	Critically Damped Case $(\alpha = \omega_0)$	$v(t) = V_s + (A_2 + A_1 t)e^{-\alpha t}$	Critically Damped Case $(\alpha = \omega_0)$	$i(t) = I_s + (A_1 + A_2 t)e^{-\alpha t}$
Underdamped Case $(\alpha < \omega_o)$	$i(t) = e^{-\alpha t} (B_1 \cos \omega_d t + B_2 \sin \omega_d t)$	Underdamped Case $(\alpha < \omega_o)$	$v(t) = e^{-\alpha t} (B_1 \cos \omega_d t + B_2 \sin \omega_d t)$	Underdamped Case $(\alpha < \omega_o)$	$v(t) = V_s + e^{-\alpha t} (A_1 \cos \omega_d t + A_2 \sin \omega_d t)$	Underdamped Case $(\alpha < \omega_0)$	$i(t) = I_s + e^{-\alpha t} (A_1 \cos \omega_d t + A_2 \sin \omega_d t)$
tial condition:	$v(0^+) = v(0^-)$ $i(0^+) = i(0^-)$	Initial condition:	$v(0^+) = v(0^-)$ $i(0^+) = i(0^-)$	Initial condition:	$v(0^+) = v(0^-)$ $i(0^+) = i(0^-)$	Initial condition:	$v(0^+) = v(0^-)$ $i(0^+) = i(0^-)$
nstants:	$\frac{di(0)}{dt} = -\frac{1}{L}[Ri(0) + v(0)]$	constants:	$\frac{dv(0)}{dt} = -\frac{\left(v(0) + Ri(0)\right)}{RC}$	constants:	$\frac{dv(0)}{dt} = \frac{i(0)}{C}$	constants:	$\frac{di(0)}{dt} = \frac{v(0)}{L}$
			$v(0) _{t=0} o equation 1$		$v(0) _{t=0} o equation 1$		$ v(0) _{t=0} o equation 1$
	$ i(0) _{t=0} o equation \ 1$ $\frac{di(0)}{dt} _{t=0} o equation \ 2$		$\frac{dv(0)}{dt} _{t=0} o equation 2$		$rac{dv(0)}{dt}ig _{t=0} ightarrow equation 2$		$rac{dv(0)}{dt} _{t=0} ightarrow equation 2$